新媒易动态
NEWS CENTER
NEWS CENTER
2021-03-12
基于买量做AB包测试首登送券,验证在相同买量条件下,有优惠券的包和无优惠券的包新用户付费率、新用户付费arpu值的对比。
活动后台首登送券规则的测试运行。
实现了优惠券活动——新注册帐号自动发放优惠券的功能。
活动时间:3天。
活动期间内,用户在【活动游戏包】内注册新帐号,可领取到系统自动推送的5张优惠券。
满减面额:【满6减2】、【满30减5】、【满68减10】、【满128减20】、【满328减50】(总计付费560+,成本87,整套约85折)。
优惠券张数:各档位预备3k张(用户量级预计2k)。
有效期:领取后2天到期。
1)包维度—对比整体付费效果的提升:
(AB包)总流水、付费率、新人付费率、新人付费流水、活跃arpu值、留存率【后台可查】。
2)用户维度—用于计算用户LTV:
用券用户的注册时间、使用优惠券时间【技术获取】。
3)优惠券维度—统计优惠券使用效果/付费金额:
换名包新增用户数、领取优惠券人数、领取使用人数、成功下单占比、满减总金额、ROI与测试包ROI、未使用过期券占比、用券净消费金额【后台可查/计算】。
为避免AB包买量因素不同的影响,应尽可能控制相同资源位、同等素材、同等量级,减少无关因素的干扰【市场】。
市场导量需要控量,避免超过优惠券张数【市场】。
游戏内尽量避免运营活动开展情况的不同而对用户的付费影响【运营】。
简单来说,市场买量的波动性污染了实验组和对照组的数据。
本次测试市场导量策略有调整,来量节奏存在一定不稳定性,用户质量参差不齐,广点通用户质量明显优于头条。
实验组导量太少,且和对照组量级差距太大,发放优惠券的实验组仅为不发的对照组的量级的1/3,进而导致数据波动较大。
最低一档的【满6减2】优惠券在折扣力度上不足以让非R玩家转化(尤其是本次头条导入的用户付费质量明显偏低,能够转化为付费玩家的基数也相对小了)
增长的第一炮往往是最重要的,第一炮打响了团队对业务的信心会提升,资源也更容易争取;但现实并不如人所愿,第一次ab测试几乎以失败结束,由于市场买量的波动性,并不能得出发放优惠券能够提升运营数据的结论。
在一次无意的资料搜索中,找到了其他行业的案例分析,在和伙伴讨论后茅塞顿开,行业虽然不同,但遇到的问题及解题思路都是互通的。
这段文字翻译成游戏行业的术语是:
目的:量化优惠券使用户额外消费的金额。
需要的数据:
相关指标:
最终得到:
流水提升=有优惠券流水-正常流水。
注:
具体实操上,我只需要找一个市场买量投放稳定的包,对比其发优惠券前后的数据,将发券前的数据作为正常值,套用上方公式即可得出结论。