仅只有未实名的,新媒易不收取任何费用,公益非盈利机构
24小时服务热线: 4000-162-302
请扫码咨询

新媒易动态

NEWS CENTER

DBSCAN是一种基于密度的考虑到噪音的空间聚类算法

2020-12-31

DBSCAN是一种基于密度的考虑到噪音的空间聚类算法;简单来讲,给定一组点,DBSCAN将彼此距离(欧几里得距离)很近的点聚成一类,同时它还将低密度区域中的点标记为异常值(outlier)。

要了解DBSCAN算法,我们先来熟悉一些关键概念:

  • 数据点密度:某数据点指定的半径中点的数量即称为密度;
  • 核心对象/核心点:如果指定半径(ε)内的数据点数量超过了规定的点数量(Minpts),那么该点即称为核心点;
  • 边界点:如果某点的半径(ε)内的点数量少于规定的点数量(Minpts),不能发展下线,但是却在核心点的邻域内,那么该点称为边界点;
  • 密度可达:若某点a在点b的邻域内,则b是核心点a的直接密度可达,若点c又在点b的邻域内,则点c是点a的间接密度可达,a和c密度相连(传播过程);
  • 异常值/离群值:未在核心点邻域内,从任何一个核心点出发都密度不可达,既不是核心点也不是边界点的点称为异常值点;

以下图为例,将所有点基于半径(ε)画圈,指定数据点密度为3,我们发现下图红色点在指定半径内的密度均>3,故红色点为核心点。

而B、C点在核心点邻域内,但是其半径内的点只有2个,小于指定密度,故B、C为边界点。

N点未在核心点邻域内,且从任何一个核心点出发都密度不可达,故N为异常值点;以上点A与B、A与C均密度相连。


二、DBSCAN算法实现原理

  • 算法根据指定的邻域密度参数 (ε , Minpts ) 找出所有点中的核心点,确定核心点集合为Ω;
  • 从Ω中,随机选取一个核心点作为对象,找出所有由其密度可达的样本生成聚类簇;
  • 重复过程2,在Ω中随机选取未被聚簇过的剩余核心点,持续进行直到所有核心点密度可达的聚类完全被发现;


三、算法优缺点

优点:

  • 不需要预先指定聚类簇个数;
  • 聚类的形状和大小非常灵活;
  • 能够识别和处理异常值(离群点);
  • 参数较少,只有2个;

缺点:

  • 不适用高维数据;
  • 确定合理的参数较困难,且参数对结果影响较大;
  • Sklearn中运行效率较慢;
  • 难以寻找不同密度下的聚类;

算法针对数据点形状和大小有灵活性,且可以识别处理异常值,聚类效果表现优异,如下图:


四、DBSCAN数据分析实战案例

案例背景:O2O平台为了更好地为线下店面服务,增加一个增值服务,即利用自己拥有的地理位置数据为线下店面选址,数据如下:


每一条数据是一个兴趣点(POI – Point of Interest)的特征,具体指的是以这个位置为中心的500米半径圆里,各类商家/设施的数量;数据中我们隐藏掉了每个POI的具体名称、坐标、类型,选址的商家将试图从这些位置中选择一个作为下一个店面的位置。

商家想知道这40个潜在店面位置之间是否有显著的差异。我们可以将所有POI按照相似程度,划分成几个类别?

步骤:


  • 数据准备:数据获取、数据清洗、数据变换等步骤,重点是针对分析目的,进行特征选择以及特征标准化;
  • 数据建模:使用DBSCAN算法进行数据建模;
  • 后续分析:聚类模型的特征描述分析,基于业务问题,进一步分析。

1)读取数据


2)特征选取



3)标准化


4)建立DBSCAN模型并可视化



5)聚类分析,对每一聚类进行进一步分析和描述


6)根据描述分析,生成poi聚类结果画像,利用聚类,对人群/商品/行为标签进行精细划分,作为进一步商业决策的基础。

相关推荐