新媒易动态
NEWS CENTER
NEWS CENTER
2019-05-13
基于物品的协同过滤算法是目前业界应用最多的算法。无论是亚马逊网,还是Netflix、Hulu、YouTube,其推荐算法的基础都是该算法。我在前面提到,这个算法主要思路是用户推荐和他之前喜欢的物品相似的物品。在上一篇文章,我们已经把用户之前的浏览行为都记录下来,通过分析和标签化,形成了用户画像。那么其实我们已经完成了第一步,掌握用户之前喜欢的内容。那么第二步即使计算物品相似程度,找到最为相似的物品形成个性化的推荐,再通过推送系统触达用户。下面为大家详细讲解计算的过程:
首先如何找到用户感兴趣的物品,在上一篇我们是通过把内容标签化,并把标签赋予用户。那么我们从用户画像中取出一组与推荐物品相关的用户标签。即想给用户推荐商品,那么取出与商品相关的一组用户标签,例如是用户A(茶叶,铁观音,清香,100-200元/斤,产地福建,2018新茶,….)。然后我们在取出待推荐的物品列表,以同样标签化的方式整理,如下图: